坐标系统

来源:互联网 发布:电信4g网络 编辑:程序博客网 时间:2024/06/10 03:53

罗列部分常用时间与空间坐标系统


1 参考文献

[1] 《GPS原理与接收机设计 谢钢》;
[2] 《GPS、GLONASS、GAL ILEO三大系统间时间系统以及坐标系统的转换》;

2 空间坐标

2.1 地心地固坐标

地心地固坐标系(Earth-Centered, Earth-Fixed,简称ECEF)简称地心坐标系,是一种以地心为原点的地固坐标系(也称地球坐标系),是一种笛卡儿坐标系。原点O (0,0,0)为地球质心,z 轴与地轴平行指向北极点,x 轴指向本初子午线与赤道的交点,y 轴垂直于xOz平面(即东经90度与赤道的交点)构成右手坐标系。该坐标又可进一步细分为地心直角坐标与地心大地坐标(经纬高程)。
地心坐标系(geocentric coordinate system )以地球质心为原点建立的空间直角坐标系,或以球心与地球质心重合的地球椭球面为基准面所建立的大地坐标系。空间直角坐标系与大地坐标系之间可相互转换,根据不同的地球椭圆模型(CGCS 2000,IUGG 1975,克拉索夫斯基椭球)在转换系数上稍有差异。
这里写图片描述

2.2 WGS-84坐标

WGS-84坐标系(World Geodetic System一1984 Coordinate System):一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向BIH (国际时间服务机构)1984.O定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系统。GPS广播星历是以WGS-84坐标系为根据的

2.3 站心坐标

站心坐标系:Earth-fixed coordinate system(站点坐标系、东-北-天坐标系ENU)。用于需了解以观察者为中心的其他物体运动规律,如接收机可见GPS卫星的视角、方位角及距离等,需要用到站心坐标系。可进一步分为:
(1)站心直角坐标系
定义:以站心(如GPS接收天线中心)为坐标系原点O,Z轴与椭球法线重合,向上为正(天向),y与椭球短半轴重合(北向),x轴与地球椭球的长半轴重合(东向)所构成的直角坐标系,称为当地东北天坐标系(ENU)。
(2)站心极坐标系
定义:以站心为坐标极点O,以水平面(即xoy平面)为基准面,以东向轴(即x轴)为极轴,ρ为卫星到站点的距离,az为星视方向角(azimuth angle),el为星视仰角(elevation)。

2.4 CGCS2000坐标

CGCS2000是(中国)2000国家大地坐标系的缩写,该坐标系是通过中国GPS 连续运行基准站、 空间大地控制网以及天文大地网与空间地网联合平差建立的地心大地坐标系统。2000(中国)国家大地坐标系以ITRF 97 参考框架为基准, 参考框架历元为2000.0。
根据2000 国家大地坐标系(CGCS 2000) 的定义及其所定义的4 个基本椭球常数,推导CGCS 2000 椭球的主要几何和物理参数,比较这些参数与GRS 80 和WGS 84 椭球相应参数之间的差异,给出CGCS 2000 椭球与GRS 80 及WGS 84 椭球定义的正常重力值的差异, 并分析在CGCS 2000 及WGS 84 系下同一点坐标的差异。研究表明:CGCS 2000椭球上的正常重力值与GRS 80 ,WGS 84 椭球上的正常重力值的差值分别约为- 143. 54 ×10 - 8 m/ s2 和0. 02×10 - 8 m/ s2 。同一点在CGCS 2000 与GRS 80 和WGS 84 下经度相同,纬度的最大差值分别为8. 26 ×10 - 11″(相当于2. 5 ×10 - 6 mm) 和3. 6 ×10 - 6″(相当于0. 11 mm) 。这里主要是指椭球参数的不同而引起的同一点经纬度的差异,给定点位在某一框架和某一历元下的空间直角坐标,投影到CGCS 2000 椭球和WGS 84 椭球上所得的纬度的最大差异相当于0. 11 mm。

2.5 PE-90坐标

GLONASS使用的是前苏联地心坐标系(PE-90)。


3 时间坐标

3.1 ATI

国际原子时(TAI):针对某些元素的原子能级跃迁频率有极高的稳定性,可采用基于铯原子(Cs 132.9)的能级跃迁原子秒作为时标。国际计量局(BIPM)根据世界20多个国家的实验室的100多台原子钟提供的数据进行处理,得出“国际时间标准”称为国际原子时(TAI)。原子时秒长的定义是:铯133原子基态的两个超精细能级间在零磁场下跃迁辐射周期 9,192,631,770倍所持续的时间。1967年第十三届国际计量委员会决定,把在海平面上实现的上述原子时秒,规定为国际单位制时间单位。从此,时间计量标准便正式由天文学的宏观领域过渡到了物理学的微观领域。
因此ATI可理解为一种标准的时间计量单位。

3.2 UTC

协调世界时(英:Universal Time Coordinated ,法:Temps Universel Coordonné),又称世界统一时间,世界标准时间,国际协调时间。英文(CUT)和法文(TUC)的缩写不同,作为妥协,简称UTC。协调世界时是以原子时秒长为基础,在时刻上尽量接近于世界时的一种时间计量系统。
闰秒(或称为跳秒)是对协调世界时作出加一秒或减一秒的调整。国际原子时的准确度为每日数纳秒,而世界时的准确度为每日数毫秒。对于这种情况,一种称为协调世界时的折中时标于1972年面世。为确保协调世界时与世界时相差不会超过0.9秒,在有需要的情况下会在协调世界时内加上正或负一整秒。这一技术措施就称为闰秒。

3.3 GPS时

GPS时间系统采用原子时AT1秒长作时间基准,秒长定义为铯原子CS133基态的两个超精细能级间跃迁辐射振荡9192631170周所持续的时间,时间起算的原点定义在1980年1月6日世界协调时UTC0时,启动后不跳秒,保证时间的连续。以后随着时间积累,GPS时与UTC时的整秒差以及秒以下的差异通过时间服务部门定期公布。
文档编写时期,GPS与UTC相差16个闰秒。

3.4 BDS时

北斗系统的时间基准为北斗时(BDT)。BDT采用国际单位制(SI)秒为基本单位连续累计,不闰秒,起始历元为2006年1月1日协调世界时(UTC)00时00分00秒,采用周和周内秒计数。BDT通过UTC(NTSC)与国际UTC建立联系,BDT与UTC的偏差保持在100纳秒以内(模1秒)。BDT与UTC之间的闰秒信息在导航电文中播报。北斗周和GPS周相差1356周,北斗秒和GPS秒相差14秒。
文档编写时期,BDS与UTC相差2个闰秒。

3.5 GLO时

GLONASS时间系统亦采用原子时ATI秒长作为时间基准, 是基于前苏联莫斯科的协调世界时UTC ( SU) , 采用的UTC时并含有跳秒改正。其与GPS时间间的转换关系参见参考文献[2]。
与GPS时相类似,GLONASS也建立了自己专用的原子时用于全球的导航与定位。与GPS时不同的是它是以采用莫斯科时间为标准,以俄罗斯(前苏联)维持的UTC(SU)作为时问度量的基准。GLONASST与UTC(SU)具有相同的闰秒,存在3小时的整数偏移,不存在整秒差,但相差一个微小偏差(1ms以内)。

0 0
原创粉丝点击