两种计算Java对象大小的方法

来源:互联网 发布:淘宝网水兵舞服装全套 编辑:程序博客网 时间:2024/06/10 07:53

之前想研究一下unsafe类,碰巧在网上看到了这篇文章,觉得写得很好,就转载过来。原文出处是:
http://blog.csdn.net/iter_zc/article/details/41822719

1 基础知识

普通对象的结构如下,按64位机器的长度计算
1. 对象头(_mark), 8个字节
2. Oop指针,如果是32G内存以下的,默认开启对象指针压缩,4个字节
3. 数据区
4. Padding(内存对齐),按照8的倍数对齐

数组对象结构是
1. 对象头(_mark), 8个字节
2. Oop指针,如果是32G内存以下的,默认开启对象指针压缩,4个字节
3. 数组长度,4个字节
4. 数据区
5. Padding(内存对齐),按照8的倍数对齐

这里写图片描述

清楚了对象在内存的基本布局后,咱们说两种计算Java对象大小的方法

  1. 通过java.lang.instrument.Instrumentation的getObjectSize(obj)直接获取对象的大小
  2. 通过sun.misc.Unsafe对象的objectFieldOffset(field)等方法结合反射来计算对象的大小

2 instrument的getObjectSize(obj)

先讲讲java.lang.instrument.Instrumentation.getObjectSize()的方式,这种方法得到的是Shallow Size,即遇到引用时,只计算引用的长度,不计算所引用的对象的实际大小。如果要计算所引用对象的实际大小,可以通过递归的方式去计算。

java.lang.instrument.Instrumentation的实例必须通过指定javaagent的方式才能获得,具体的步骤如下:
1. 定义一个类,提供一个premain方法: public static void premain(String agentArgs, Instrumentation instP)
2. 创建META-INF/MANIFEST.MF文件,内容是指定PreMain的类是哪个: Premain-Class: sizeof.ObjectShallowSize
3. 把这个类打成jar,然后用java -javaagent XXXX.jar XXX.main的方式执行

下面先定义一个类来获得java.lang.instrument.Instrumentation的实例,并提供了一个static的sizeOf方法对外提供Instrumentation的能力

package sizeof;  import java.lang.instrument.Instrumentation;  public class ObjectShallowSize {      private static Instrumentation inst;      public static void premain(String agentArgs, Instrumentation instP){          inst = instP;      }      public static long sizeOf(Object obj){          return inst.getObjectSize(obj);      }  }  

定义META-INF/MANIFEST.MF文件

Premain-Class: sizeof.ObjectShallowSize

打成jar包

cd 编译后的类和META-INF文件夹所在目录  jar cvfm java-agent-sizeof.jar META-INF/MANIFEST.MF  

准备好了这个jar之后,我们可以写测试类来测试Instrumentation的getObjectSize方法了。在这之前我们先来看对象在内存中是按照什么顺序排列的

有如下这个类,字段的定义按如下顺序

private static class ObjectA {          String str;  // 4          int i1; // 4          byte b1; // 1          byte b2; // 1          int i2;  // 4           ObjectB obj; //4          byte b3;  // 1  }  

按照我们之前说的方法来计算一下这个对象所占大小,注意按8对齐
8(_mark) + 4(oop指针) + 4(str) + 4(i1) + 1(b1) + 1(b2) + 2(padding) + 4(i2) + 4(obj) + 1(b3) + 7(padding) = 40 ?

但事实上是这样的吗? 我们来用Instrumentation的getObjectSize来计算一下先:

package test;  import sizeof.ObjectShallowSize;  public class SizeofWithInstrumetation {      private static class ObjectA {          String str;  // 4          int i1; // 4          byte b1; // 1          byte b2; // 1          int i2;  // 4           ObjectB obj; //4          byte b3;  // 1      }      private static class ObjectB {      }      public static void main(String[] args){          System.out.println(ObjectShallowSize.sizeOf(new ObjectA()));      }  }  

得到的结果是32!不是会按8对齐吗,b3之前的数据加起来已经是32了,多了1个b3,为33,应该对齐到40才对啊。事实上,HotSpot创建的对象的字段会先按照给定顺序排列一下,默认的顺序如下,从长到短排列,引用排最后: long/double –> int/float –> short/char –> byte/boolean –> Reference

这个顺序可以使用JVM参数: -XX:FieldsAllocationSylte=0(默认是1)来改变。

我们使用sun.misc.Unsafe对象的objectFieldOffset方法来验证一下:

Field[] fields = ObjectA.class.getDeclaredFields();          for(Field f: fields){              System.out.println(f.getName() + " offset: " +unsafe.objectFieldOffset(f));          }  

这里写图片描述

可以看到确实是按照从长到短,引用排最后的方式在内存中排列的。按照这种方法我们来重新计算下ObjectA创建的对象的长度:

8(_mark) + 4(oop指针) + 4(i1) + + 4(i2) + 1(b1) + 1(b2) + 1(b3) + 1(padding) + 4(str) + 4(obj) = 32
得到的结果和java.lang.instrument.Instrumentation.getObjectSize()的结果是一样的,证明我们的计算方式是正确的。

3 sun.misc.Unsafe的方式

下面说一下通过sun.misc.Unsafe对象的objectFieldOffset(field)等方法结合反射来计算对象的大小。基本的思路如下:
1. 通过反射获得一个类的Field
2. 通过Unsafe的objectFieldOffset()获得每个Field的offSet
3. 对Field按照offset排序,取得最大的offset,然后加上这个field的长度,再加上Padding对齐

上面三步就可以获得一个对象的Shallow size。可以进一步通过递归去计算所引用对象的大小,从而可以计算出一个对象所占用的实际大小。

如何获得Unsafe对象已经在这篇中聊聊序列化(二)使用sun.misc.Unsafe绕过new机制来创建Java对象说过了,可以通过反射的机制来获得.

Oop指针是4还是未压缩的8也可以通过unsafe.arrayIndexScale(Object[].class)来获得,这个方法返回一个引用所占用的长度

static {          try {              Field field = Unsafe.class.getDeclaredField("theUnsafe");              field.setAccessible(true);              unsafe = (Unsafe) field.get(null);              objectRefSize = unsafe.arrayIndexScale(Object[].class);          } catch (Exception e) {              throw new RuntimeException(e);          }      }  

下面的源码摘自 http://java-performance.info/memory-introspection-using-sun-misc-unsafe-and-reflection/, 原文中的代码在计算对象大小的时候有问题,我做了微调,并加上了内存对齐的方法,这样计算出的结果和Instrumentation的getObjectSize方法是一样的。

package test;  import java.util.ArrayList;  import java.util.Collections;  import java.util.Comparator;  import java.util.List;  /**  * This class contains object info generated by ClassIntrospector tool  */  public class ObjectInfo {      /** Field name */      public final String name;      /** Field type name */      public final String type;      /** Field data formatted as string */      public final String contents;      /** Field offset from the start of parent object */      public final int offset;      /** Memory occupied by this field */      public final int length;      /** Offset of the first cell in the array */      public final int arrayBase;      /** Size of a cell in the array */      public final int arrayElementSize;      /** Memory occupied by underlying array (shallow), if this is array type */      public final int arraySize;      /** This object fields */      public final List<ObjectInfo> children;      public ObjectInfo(String name, String type, String contents, int offset, int length, int arraySize,      int arrayBase, int arrayElementSize)      {          this.name = name;          this.type = type;          this.contents = contents;          this.offset = offset;          this.length = length;          this.arraySize = arraySize;          this.arrayBase = arrayBase;          this.arrayElementSize = arrayElementSize;          children = new ArrayList<ObjectInfo>( 1 );      }      public void addChild( final ObjectInfo info )      {          if ( info != null )              children.add( info );      }      /**     * Get the full amount of memory occupied by a given object. This value may be slightly less than     * an actual value because we don't worry about memory alignment - possible padding after the last object field.     *     * The result is equal to the last field offset + last field length + all array sizes + all child objects deep sizes     * @return Deep object size     */      public long getDeepSize()      {          //return length + arraySize + getUnderlyingSize( arraySize != 0 );          return addPaddingSize(arraySize + getUnderlyingSize( arraySize != 0 ));      }      long size = 0;      private long getUnderlyingSize( final boolean isArray )      {          //long size = 0;          for ( final ObjectInfo child : children )              size += child.arraySize + child.getUnderlyingSize( child.arraySize != 0 );          if ( !isArray && !children.isEmpty() ){              int tempSize = children.get( children.size() - 1 ).offset + children.get( children.size() - 1 ).length;              size += addPaddingSize(tempSize);          }          return size;      }      private static final class OffsetComparator implements Comparator<ObjectInfo>      {          @Override          public int compare( final ObjectInfo o1, final ObjectInfo o2 )          {              return o1.offset - o2.offset; //safe because offsets are small non-negative numbers          }      }      //sort all children by their offset      public void sort()      {          Collections.sort( children, new OffsetComparator() );      }      @Override      public String toString() {          final StringBuilder sb = new StringBuilder();          toStringHelper( sb, 0 );          return sb.toString();      }      private void toStringHelper( final StringBuilder sb, final int depth )      {          depth( sb, depth ).append("name=").append( name ).append(", type=").append( type )              .append( ", contents=").append( contents ).append(", offset=").append( offset )              .append(", length=").append( length );          if ( arraySize > 0 )          {              sb.append(", arrayBase=").append( arrayBase );              sb.append(", arrayElemSize=").append( arrayElementSize );              sb.append( ", arraySize=").append( arraySize );          }          for ( final ObjectInfo child : children )          {              sb.append( '\n' );              child.toStringHelper(sb, depth + 1);          }      }      private StringBuilder depth( final StringBuilder sb, final int depth )      {          for ( int i = 0; i < depth; ++i )              sb.append( "\t");          return sb;      }      private long addPaddingSize(long size){          if(size % 8 != 0){              return (size / 8 + 1) * 8;          }          return size;      }  }  package test;  import java.lang.reflect.Array;  import java.lang.reflect.Field;  import java.lang.reflect.Modifier;  import java.util.ArrayList;  import java.util.Arrays;  import java.util.Collections;  import java.util.HashMap;  import java.util.IdentityHashMap;  import java.util.List;  import java.util.Map;  import sun.misc.Unsafe;  /**  * This class could be used for any object contents/memory layout printing.  */  public class ClassIntrospector {      private static final Unsafe unsafe;      /** Size of any Object reference */      private static final int objectRefSize;      static {          try {              Field field = Unsafe.class.getDeclaredField("theUnsafe");              field.setAccessible(true);              unsafe = (Unsafe) field.get(null);              objectRefSize = unsafe.arrayIndexScale(Object[].class);          } catch (Exception e) {              throw new RuntimeException(e);          }      }      /** Sizes of all primitive values */      private static final Map<Class, Integer> primitiveSizes;      static {          primitiveSizes = new HashMap<Class, Integer>(10);          primitiveSizes.put(byte.class, 1);          primitiveSizes.put(char.class, 2);          primitiveSizes.put(int.class, 4);          primitiveSizes.put(long.class, 8);          primitiveSizes.put(float.class, 4);          primitiveSizes.put(double.class, 8);          primitiveSizes.put(boolean.class, 1);      }      /**      * Get object information for any Java object. Do not pass primitives to      * this method because they will boxed and the information you will get will      * be related to a boxed version of your value.      *       * @param obj      *            Object to introspect      * @return Object info      * @throws IllegalAccessException      */      public ObjectInfo introspect(final Object obj)              throws IllegalAccessException {          try {              return introspect(obj, null);          } finally { // clean visited cache before returning in order to make                      // this object reusable              m_visited.clear();          }      }      // we need to keep track of already visited objects in order to support      // cycles in the object graphs      private IdentityHashMap<Object, Boolean> m_visited = new IdentityHashMap<Object, Boolean>(              100);      private ObjectInfo introspect(final Object obj, final Field fld)              throws IllegalAccessException {          // use Field type only if the field contains null. In this case we will          // at least know what's expected to be          // stored in this field. Otherwise, if a field has interface type, we          // won't see what's really stored in it.          // Besides, we should be careful about primitives, because they are          // passed as boxed values in this method          // (first arg is object) - for them we should still rely on the field          // type.          boolean isPrimitive = fld != null && fld.getType().isPrimitive();          boolean isRecursive = false; // will be set to true if we have already                                          // seen this object          if (!isPrimitive) {              if (m_visited.containsKey(obj))                  isRecursive = true;              m_visited.put(obj, true);          }          final Class type = (fld == null || (obj != null && !isPrimitive)) ? obj                  .getClass() : fld.getType();          int arraySize = 0;          int baseOffset = 0;          int indexScale = 0;          if (type.isArray() && obj != null) {              baseOffset = unsafe.arrayBaseOffset(type);              indexScale = unsafe.arrayIndexScale(type);              arraySize = baseOffset + indexScale * Array.getLength(obj);          }          final ObjectInfo root;          if (fld == null) {              root = new ObjectInfo("", type.getCanonicalName(), getContents(obj,                      type), 0, getShallowSize(type), arraySize, baseOffset,                      indexScale);          } else {              final int offset = (int) unsafe.objectFieldOffset(fld);              root = new ObjectInfo(fld.getName(), type.getCanonicalName(),                      getContents(obj, type), offset, getShallowSize(type),                      arraySize, baseOffset, indexScale);          }          if (!isRecursive && obj != null) {              if (isObjectArray(type)) {                  // introspect object arrays                  final Object[] ar = (Object[]) obj;                  for (final Object item : ar)                      if (item != null)                          root.addChild(introspect(item, null));              } else {                  for (final Field field : getAllFields(type)) {                      if ((field.getModifiers() & Modifier.STATIC) != 0) {                          continue;                      }                      field.setAccessible(true);                      root.addChild(introspect(field.get(obj), field));                  }              }          }          root.sort(); // sort by offset          return root;      }      // get all fields for this class, including all superclasses fields      private static List<Field> getAllFields(final Class type) {          if (type.isPrimitive())              return Collections.emptyList();          Class cur = type;          final List<Field> res = new ArrayList<Field>(10);          while (true) {              Collections.addAll(res, cur.getDeclaredFields());              if (cur == Object.class)                  break;              cur = cur.getSuperclass();          }          return res;      }      // check if it is an array of objects. I suspect there must be a more      // API-friendly way to make this check.      private static boolean isObjectArray(final Class type) {          if (!type.isArray())              return false;          if (type == byte[].class || type == boolean[].class                  || type == char[].class || type == short[].class                  || type == int[].class || type == long[].class                  || type == float[].class || type == double[].class)              return false;          return true;      }      // advanced toString logic      private static String getContents(final Object val, final Class type) {          if (val == null)              return "null";          if (type.isArray()) {              if (type == byte[].class)                  return Arrays.toString((byte[]) val);              else if (type == boolean[].class)                  return Arrays.toString((boolean[]) val);              else if (type == char[].class)                  return Arrays.toString((char[]) val);              else if (type == short[].class)                  return Arrays.toString((short[]) val);              else if (type == int[].class)                  return Arrays.toString((int[]) val);              else if (type == long[].class)                  return Arrays.toString((long[]) val);              else if (type == float[].class)                  return Arrays.toString((float[]) val);              else if (type == double[].class)                  return Arrays.toString((double[]) val);              else                  return Arrays.toString((Object[]) val);          }          return val.toString();      }      // obtain a shallow size of a field of given class (primitive or object      // reference size)      private static int getShallowSize(final Class type) {          if (type.isPrimitive()) {              final Integer res = primitiveSizes.get(type);              return res != null ? res : 0;          } else              return objectRefSize;      }  }  

先一个测试类来验证一下Unsafe的方式计算出的结果

public class ClassIntrospectorTest  {      public static void main(String[] args) throws IllegalAccessException {          final ClassIntrospector ci = new ClassIntrospector();          ObjectInfo res;          res = ci.introspect( new ObjectA() );          System.out.println( res.getDeepSize() );      }      private static class ObjectA {          String str;  // 4          int i1; // 4          byte b1; // 1          byte b2; // 1          int i2;  // 4           ObjectB obj; //4          byte b3;  // 1      }      private static class ObjectB {      }  }  

计算结果如下:
32

和我们之前计算结果是一致的,证明是正确的。

最后再来测试一下数组对象的长度。有两个类如下:

private static class ObjectC {          ObjectD[] array = new ObjectD[2];      }      private static class ObjectD {          int value;      }  

它们在内存的大体分布如下图:

这里写图片描述

我们可以手工计算一下ObjectC obj = new ObjectC()的大小:

ObjectC的Shallow size = 8(_mark) + 4(oop指针) + 4(ObjectD[]引用) = 16

new ObjectD[2]数组的长度 = 8(_mark) + 4(oop指针) + 4(数组长度占4个字节) + 4(ObjectD[0]引用) + 4(ObjectD[1]引用) = 24

由于ObjectD[]数组没有指向具体的对象大小,所以我们手工计算的结果是16 + 24 = 40

使用Unsafe对象的方式来计算一下:

public static void main(String[] args) throws IllegalAccessException {          final ClassIntrospector ci = new ClassIntrospector();          ObjectInfo res;          res = ci.introspect( new ObjectC() );          System.out.println( res.getDeepSize() );      }  

计算结果如下,和我们计算的结果是一致的,证明是正确的:
40

再给ObjectD[]数组指向具体的ObjectD对象,再测试一下结果:

public static void main(String[] args) throws IllegalAccessException {         final ClassIntrospector ci = new ClassIntrospector();         ObjectInfo res;         res = ci.introspect( new ObjectC() );         System.out.println( res.getDeepSize() );     }     private static class ObjectC {      ObjectD[] array = new ObjectD[2];      public ObjectC(){          array[0] = new ObjectD();          array[1] = new ObjectD();      }     }     private static class ObjectD {      int value;     }  

我们可以手工计算一下ObjectC obj = new ObjectC()的大小:
ObjectC的Shallow size = 8(_mark) + 4(oop指针) + 4(ObjectD[]引用) = 16

new ObjectD[2]数组的长度 = 8(_mark) + 4(oop指针) + 4(数组长度占4个字节) + 4(ObjectD[0]引用) + 4(ObjectD[1]引用) = 24

ObjectD对象长度 = 8(_mark) + 4(oop指针) + 4(value) = 16

所以ObjectC实际占用的空间 = 16 + 24 + 2 * 16 = 72

使用Unsafe的方式计算的结果也是72,和我们手工计算的方式一致。

参考: Memory introspection using sun.misc.Unsafe and reflection

0 0
原创粉丝点击