Loadrunner---出现中文乱码怎么解决

来源:互联网 发布:java看书还是看视频 编辑:程序博客网 时间:2024/06/09 16:06

1、录制的脚本乱码LR录制的脚本中可能会有乱码,主要是当URL中有中文时。

通过如下问题可以解决此问题:

a)  Go to Vugen -> Tools -> Recording Options -> Advanced

b)  Check the option that reads "Support Charset" and select

"UTF-8"

2、回访乱码

还有一类乱码问题是IE访问页面一切正常,但是LR回放时在run viewer中显示的页面为乱码。这一问题一般是由于页面保存时的编码格式和页面中的charset格式不一致引起的(html

头中通常会有<meta http-equiv="Content-Type" c>)。遇到这类问题,只需要将页面做另存为,将保存的编码格式和页面中的charset格式统一起来就可以了。

引起问题的原因是:

IE浏览器解码时会优先考虑文件的保存编码格式,而后考虑页面中的charset格式,(正常情况下两者是一致的),而run viewer是直接使用页面中的charset格式打开的。

例如:

charset=gb2312,但是文件的保存的编码格式是UTF-8IE访问时会以UTF-8解码,而run viewer却是以GB2312格式解码,以GB2312UTF-8自然是乱码。

出现乱码的原因和解决办法很可能不全面,请大家补充。

说到底,还是run viewer功能比较简单引起的。run viewer中的乱码不影响测试结果。

3、没有快照

现在再来说一说LR的快照问题,LR脚本录制完成后回放,在回放概况中的快照都是红X,见附件。这一问题应该是LR中文补丁引起的,要去比较高的朋友,请不要打中文补丁。呵呵,LR对中文的支持还是不理想啊。最后将有关字符集的资料帖上来,供大家参考。

字符集、字符编码

1.文件分为文本文件和二进制文件﹐不过本质都一样﹐都是些01

2.计算机存储设备存储的01﹐称为计算机的一个二进制位(bit)

3.二进制文件的01有专门的应用程序来读﹐所以它们没有什么乱不乱码的问题﹐只要该程序认得就行。(doc,xls,exe,dll)

4.文本文件就不一样了﹐notepad要认识它﹐vs.net要认识它,UE也要认识它…所以它们就要有一个标准。这个标准的原理其实很简单﹐就是把所有的字符都给它一个序号﹐然后根据这个序号来找字符就可以了。这个东东就是编码表也叫字符集(charset)

5.文本文件存的都是字符﹐如﹕A,?,@,x。很明显一个bit不能表示﹐刚好计算机的存储单位–字节(byte)就是多个字节(1byte=8bit),因此用byte来表示字符就理所当然了。

6. 第一个编码表–ASCII码很快产生﹐很简单﹐就是用一个byte来表示一个字符(最高位置0),总共能存储128(2^8)个字符。如A65表示﹐存在计算机中就是01000001(65)﹐为了书写方便﹐我们一般记作0×41(16进制),97则表示小写的a,存在计算机中就是01100001 (97)﹐记作0×61?63表示,记作0×3F

7.英语国家的大小写字母加起来才52个字符﹐再加上数字﹐符号和一些特殊字符﹐已经足够使用。所以ASCII刚开始非常流行(谁叫计算机不是咱中国发明的… )

8.

随着计算机的普及﹐当非英语系的国家开始使用时﹐ASCII已经明显不能满足了(总不成天天使用xiao sheng来表示”小生”吧),所以这些国家(地区)就开始制订自己的标准。

9. 中国大陆制订了简体汉字的字符集(GB2312)。和英语国家不同﹐我们的汉字远远不止128个﹐所以一个byte肯定不能表示完﹐那就多加个byte, 16(65536)总可以了吧。不过这样虽解决了位数不够的问题﹐但是原来的英文文件怎么办?总不成又全部拿出来改成双字节吧。幸好﹐居然发现原来的ASCII的第一位居然是0﹐那我们把第1位改成1不就OK了吗?以后凡看到0开头的就读1个字节﹐1开头的就读2个字节。(而且128*128表示所有的简体字也足够了)

10.因此在GB2312标准中,”小”的序号是0xD0A1,表示成11010000 10100001,A还是表示成01000001,这就是为什么简体操作系统读ASCII文件不会乱码﹐而反之则不然的原因。

11.目前来说﹐情况还比较好﹐中国大陆的计算机运行正常。

12.看到中国大陆制订了一个标准﹐其它国家和地区也不甘示弱﹐纷纷亮出自己的字符集,于是乎什么BIG5(中国台湾),shift_jis(日本),ks_c_5601-1987(韩国)都闪亮登场﹐一时间百鸟争鸣,百花齐放。

13.每个国家都想与ASCII保持兼容﹐理所当然﹐后面的字符就完全不一样了﹐因此﹐同样的0xD0A1,GB2312中是”小”字﹐而在BIG5中却是”苤”字。你想想﹐这样不乱才怪。

14.到了这时候﹐总有人会想到﹐再这样继续下去是肯定不行的﹐于是它们就想到了﹐如果有一个标准﹐能包括所有字符那不就OK了吗?

15. 于是”大哥大”标准就出来了﹐这就是unicode,为了能够足够表示世界上的所有字符这样光荣而又伟大的任务﹐这家伙用了四个字节来表示(232次方到底是多少﹐我也懒得算了),这下好了﹐天下太平了﹐再也不会有麻烦了﹐耳根清静了…(打住﹐你小子这么这么罗嗦呀)

15.不过unicode好是好﹐但是毕竟四个字节表示一个字符”浪费”太大了(我那破猫上网容易吗﹐电信黑呀﹐说好是2M﹐就给我200K)﹐而且大家”惊奇”地发现﹐居然世界上一些”较强大”的国家的字符刚好集中在前65536位前﹐呵呵﹐结果unicode也分成了unicode-16unicode -32了﹐自然﹐前者只用两个字节表示(所以只能表示前65536位喽,欧亚国家大部分字符都OK了﹐什么﹐你们那个@$Y$%字符没有﹐呵呵﹐不管我什么事,找标准协会﹐都是那帮家伙弄的…)

16.虽然标准出来了﹐可是好歹ASCII也用了这么久﹐那些英语国家也在那里嚷嚷﹐这倒好﹐搞个什么破标准﹐我们又没有得到什么好处﹐反而让我们原来的程序都运行不了了(为什么呀﹐你想想﹐原来我们的程序字符都是一个字节一个字节认﹐现在倒好﹐全改成2个一起认﹐这还怎么跑呀?)﹐况且我们凭白无故了用了这么多0﹐真别扭(unicode中的前128位还是ASCII标准﹐只不过在前面加了8 0)﹐由于那些国家”势力”比较大﹐所以这个问题不容忽视

17.这个世界上的牛人总是这么多﹐这个问题很容易就被小意思地解决了。

18. 想想GB2312怎么解决与ASCII兼容的问题的(1开头的就读2个字节﹐0开头的就读1)﹐同样﹐UTF也这样﹐0开头的读1个字节(ASCII)110开头的读2个字节﹐1110开头的读3个字节﹐这就是伟大的UTF-8(当然还有UTF-16,原理一样﹐xx开头的读4个字节﹐xx开头的读5个字节﹐xx开头的读6个字节)

19.当然UTF-8GB2312这么简单﹐读完之后不能直接查编码表﹐多加一个步骤﹐按照模板提取一下字符再查就OK了以下就是UTF-8的模板

0 0
原创粉丝点击