malloc源码分析---5

来源:互联网 发布:godaddy 域名过户 编辑:程序博客网 时间:2024/06/10 20:19

malloc源码分析—sysmalloc

本章主要分析sysmalloc的代码,在《malloc源码分析—2》中已经分析了部分sysmalloc的代码,主要用于对分配区进行初始化。本章查看余下的代码,

第一部分

static void * sysmalloc(INTERNAL_SIZE_T nb, mstate av) {    mchunkptr old_top;    INTERNAL_SIZE_T old_size;    char *old_end;    long size;    char *brk;    long correction;    char *snd_brk;    INTERNAL_SIZE_T front_misalign;    INTERNAL_SIZE_T end_misalign;    char *aligned_brk;    mchunkptr p;    mchunkptr remainder;    unsigned long remainder_size;    size_t pagesize = GLRO(dl_pagesize);    bool tried_mmap = false;    ...    old_top = av->top;    old_size = chunksize(old_top);    old_end = (char *) (chunk_at_offset(old_top, old_size));    brk = snd_brk = (char *) (MORECORE_FAILURE);    if (av != &main_arena) {        heap_info *old_heap, *heap;        size_t old_heap_size;        old_heap = heap_for_ptr(old_top);        old_heap_size = old_heap->size;        if ((long) (MINSIZE + nb - old_size) > 0                && grow_heap(old_heap, MINSIZE + nb - old_size) == 0) {            av->system_mem += old_heap->size - old_heap_size;            arena_mem += old_heap->size - old_heap_size;            set_head(old_top,                    (((char *) old_heap + old_heap->size) - (char *) old_top) | PREV_INUSE);        } else if ((heap = new_heap(nb + (MINSIZE + sizeof(*heap)), mp_.top_pad))) {            heap->ar_ptr = av;            heap->prev = old_heap;            av->system_mem += heap->size;            arena_mem += heap->size;            top (av) = chunk_at_offset(heap, sizeof(*heap));            set_head(top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);            old_size = (old_size - MINSIZE ) & ~MALLOC_ALIGN_MASK;            set_head(chunk_at_offset (old_top, old_size + 2 * SIZE_SZ),                    0 | PREV_INUSE);            if (old_size >= MINSIZE) {                set_head(chunk_at_offset (old_top, old_size),                        (2 * SIZE_SZ) | PREV_INUSE);                set_foot(chunk_at_offset (old_top, old_size), (2 * SIZE_SZ));                set_head(old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);                _int_free(av, old_top, 1);            } else {                set_head(old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE);                set_foot(old_top, (old_size + 2 * SIZE_SZ));            }        } else if (!tried_mmap)            goto try_mmap;    }    else{        ...    }    ...}

首先,old_topold_sizeold_end分别保存了top chunk的指针,大小以及尾部的地址。
如果是非主分配区,首先通过heap_for_ptr获得原top chunk对应的heap_info指针,

#define heap_for_ptr(ptr) \  ((heap_info *) ((unsigned long) (ptr) & ~(HEAP_MAX_SIZE - 1)))

对于非主分配区,因为每个heap是按照HEAP_MAX_SIZE的大小分配且对齐的,而每个topchunk存在于每个heap的剩余空间(高地址处),因此通过heap_for_ptr就能取出heap_info指针,heap_info保存了每个heap的相关信息。获得heap_info指针后,就能获得该heap当前被使用的大小并将其保存在old_heap_size中。
根据《malloc源码分析—4》,进入到sysmalloc前会尝试在top chunk分配内存,因此代码执行到这里肯定失败了。所以这里只有MINSIZE + nb - old_size>0这一种情况,即这时的top chunk空间不足了,因此首先通过grow_heap尝试向heap的高地址处增加heap当前使用的大小,即top chunk的大小,

static int grow_heap(heap_info *h, long diff) {    size_t pagesize = GLRO(dl_pagesize);    long new_size;    diff = ALIGN_UP(diff, pagesize);    new_size = (long) h->size + diff;    if ((unsigned long) new_size > (unsigned long) HEAP_MAX_SIZE)        return -1;    if ((unsigned long) new_size > h->mprotect_size) {        if (__mprotect((char *) h + h->mprotect_size,                (unsigned long) new_size - h->mprotect_size,                PROT_READ | PROT_WRITE) != 0)            return -2;        h->mprotect_size = new_size;    }    h->size = new_size;    LIBC_PROBE(memory_heap_more, 2, h, h->size);    return 0;}

这段代码其实最关键的是h->size = new_size这一样,表示重新设置heap的大小至new_size
回到sysmalloc中,假设grow_heap成功,即将top chunk的大小设置为MINSIZE + nb,则重新设置分配区使用的内存大小,并且设置top chunk的size至新值(注意这里的size不能直接设置为MINSIZE + nb是因为在grow_heap中有对齐操作)。

假设grow_heap失败,大部分情况下说明heap的使用大小已经接近其最大值HEAP_MAX_SIZE了,此时只能通过new_heap重新分配一个heap,注意传入的参数mp_.top_pad表示在分配内存时,额外多分配的内存。

static heap_info * internal_function new_heap(size_t size, size_t top_pad) {    size_t pagesize = GLRO(dl_pagesize);    char *p1, *p2;    unsigned long ul;    heap_info *h;    if (size + top_pad < HEAP_MIN_SIZE)        size = HEAP_MIN_SIZE;    else if (size + top_pad <= HEAP_MAX_SIZE)        size += top_pad;    else if (size > HEAP_MAX_SIZE)        return 0;    else        size = HEAP_MAX_SIZE;    size = ALIGN_UP(size, pagesize);    p2 = MAP_FAILED;    if (aligned_heap_area) {        p2 = (char *) MMAP(aligned_heap_area, HEAP_MAX_SIZE, PROT_NONE,                MAP_NORESERVE);        aligned_heap_area = NULL;        if (p2 != MAP_FAILED && ((unsigned long) p2 & (HEAP_MAX_SIZE - 1))) {            __munmap(p2, HEAP_MAX_SIZE);            p2 = MAP_FAILED;        }    }    if (p2 == MAP_FAILED) {        p1 = (char *) MMAP(0, HEAP_MAX_SIZE << 1, PROT_NONE, MAP_NORESERVE);        if (p1 != MAP_FAILED) {            p2 = (char *) (((unsigned long) p1 + (HEAP_MAX_SIZE - 1))                    & ~(HEAP_MAX_SIZE - 1));            ul = p2 - p1;            if (ul)                __munmap(p1, ul);            else                aligned_heap_area = p2 + HEAP_MAX_SIZE;            __munmap(p2 + HEAP_MAX_SIZE, HEAP_MAX_SIZE - ul);        } else {            p2 = (char *) MMAP(0, HEAP_MAX_SIZE, PROT_NONE, MAP_NORESERVE);            if (p2 == MAP_FAILED)                return 0;            if ((unsigned long) p2 & (HEAP_MAX_SIZE - 1)) {                __munmap(p2, HEAP_MAX_SIZE);                return 0;            }        }    }    if (__mprotect(p2, size, PROT_READ | PROT_WRITE) != 0) {        __munmap(p2, HEAP_MAX_SIZE);        return 0;    }    h = (heap_info *) p2;    h->size = size;    h->mprotect_size = size;    LIBC_PROBE(memory_heap_new, 2, h, h->size);    return h;}

首先对需要分配的内存大小size做相应的调整。aligned_heap_area表示上一次MMAP分配后的结束地址,如果存在,就首先尝试从该地址分配大小为HEAP_MAX_SIZE的内存。MMAP最后是系统调用,对应的内核函数在《malloc源码分析—2》中已经介绍过了,这里只是一些标志位的区别。分配完后,会检查地址是否对齐,如果不对齐也是失败。
如果第一次分配失败了,就会再尝试一次,这次分配HEAP_MAX_SIZE*2大小的内存,并且新内存的起始地址由内核决定。因为尝试分配了HEAP_MAX_SIZE*2大小的内存,其中必定包含了大小为HEAP_MAX_SIZE且和HEAP_MAX_SIZE对齐的内存,因此一旦分配成功,就从中截取出这部分内存。
如果连第二次也分配失败了,就会通过MMAP进行第三次分配,这次只分配HEAP_MAX_SIZE大小的内存,并且起始地址由内核决定,如果又失败了就返回0。
如果三面三次分配内存任何一次成功,就设置相应的可读写位置,并且返回分配区的heap_info指针。

重新回到sysmalloc中,假设分配成功,就会对刚刚分配得到的heap做相应的设置,其中ar_ptr表示所属的分配区的指针,prev表示上一个heap,所有的heap通过prev形成单向链表,然后通过set_head设置av分配区top chunk的size,这里也可以看出,对于刚分配的heap,包含了heap_info指针、top chunk、以及大于size的未被使用的部分。
再接下来就要对原来的top chunk进行最后的处理,这里假设对齐,如果原top chunk的大小不够大,就将其分割成old_size + 2 * SIZE_SZ2 * SIZE_SZ大小;如果原top chunk的大小足够大,就将其分割成old_size2 * SIZE_SZ2 * SIZE_SZ大小,并通过_int_free进行释放。

第二部分

继续往下看sysmalloc,上面一部分代码主要是针对非主分配区的操作,下面的这段代码就是针对主分配区的操作了。

static void * sysmalloc(INTERNAL_SIZE_T nb, mstate av) {    ...    if (av != &main_arena) {        ...    }    else{        size = nb + mp_.top_pad + MINSIZE;        if (contiguous(av))            size -= old_size;        size = ALIGN_UP(size, pagesize);        if (size > 0) {            brk = (char *) (MORECORE(size));            LIBC_PROBE (memory_sbrk_more, 2, brk, size);        }        if (brk != (char *) (MORECORE_FAILURE)) {            void (*hook)(void) = atomic_forced_read (__after_morecore_hook);            if (__builtin_expect (hook != NULL, 0))            (*hook)();        }        else{            if (contiguous (av))                size = ALIGN_UP (size + old_size, pagesize);            if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE))                size = MMAP_AS_MORECORE_SIZE;            if ((unsigned long) (size) > (unsigned long) (nb)){                char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));                if (mbrk != MAP_FAILED){                    brk = mbrk;                    snd_brk = brk + size;                    set_noncontiguous (av);                }            }        }        ...    }    ...}

MORECORE是一个宏定义,其最终是通过系统调用分配内存,定义在linux内核的mmap.c文件中,

SYSCALL_DEFINE1(brk, unsigned long, brk){    unsigned long retval;    unsigned long newbrk, oldbrk;    struct mm_struct *mm = current->mm;    unsigned long min_brk;    bool populate;    down_write(&mm->mmap_sem);    min_brk = mm->start_brk;    if (brk < min_brk)        goto out;    if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,                  mm->end_data, mm->start_data))        goto out;    newbrk = PAGE_ALIGN(brk);    oldbrk = PAGE_ALIGN(mm->brk);    if (oldbrk == newbrk)        goto set_brk;    if (brk <= mm->brk) {        if (!do_munmap(mm, newbrk, oldbrk-newbrk))            goto set_brk;        goto out;    }    if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))        goto out;    if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)        goto out;set_brk:    mm->brk = brk;    populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;    up_write(&mm->mmap_sem);    if (populate)        mm_populate(oldbrk, newbrk - oldbrk);    return brk;out:    retval = mm->brk;    up_write(&mm->mmap_sem);    return retval;}

首先会对传入堆的新地址brk做一些检查,然后该新地址小于原本的brk,就需要通过do_munmap释放虚拟内存,以减少堆的大小;反之,就通过do_brk增加堆得大小。其中find_vma_intersection用来判断增加堆空间后,是否会占用已经被分配的虚拟内存,

static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr){    struct vm_area_struct * vma = find_vma(mm,start_addr);    if (vma && end_addr <= vma->vm_start)        vma = NULL;    return vma;}

因为是增加堆的大小,因此只需要关心do_brk函数,

static unsigned long do_brk(unsigned long addr, unsigned long len){    struct mm_struct *mm = current->mm;    struct vm_area_struct *vma, *prev;    unsigned long flags;    struct rb_node **rb_link, *rb_parent;    pgoff_t pgoff = addr >> PAGE_SHIFT;    int error;    len = PAGE_ALIGN(len);    if (!len)        return addr;    flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;    error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);    if (error & ~PAGE_MASK)        return error;    error = mlock_future_check(mm, mm->def_flags, len);    if (error)        return error;    verify_mm_writelocked(mm);    while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,                  &rb_parent)) {        if (do_munmap(mm, addr, len))            return -ENOMEM;    }    if (!may_expand_vm(mm, len >> PAGE_SHIFT))        return -ENOMEM;    if (mm->map_count > sysctl_max_map_count)        return -ENOMEM;    if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))        return -ENOMEM;    vma = vma_merge(mm, prev, addr, addr + len, flags,                    NULL, NULL, pgoff, NULL);    if (vma)        goto out;    vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);    if (!vma) {        vm_unacct_memory(len >> PAGE_SHIFT);        return -ENOMEM;    }    INIT_LIST_HEAD(&vma->anon_vma_chain);    vma->vm_mm = mm;    vma->vm_start = addr;    vma->vm_end = addr + len;    vma->vm_pgoff = pgoff;    vma->vm_flags = flags;    vma->vm_page_prot = vm_get_page_prot(flags);    vma_link(mm, vma, prev, rb_link, rb_parent);out:    perf_event_mmap(vma);    mm->total_vm += len >> PAGE_SHIFT;    if (flags & VM_LOCKED)        mm->locked_vm += (len >> PAGE_SHIFT);    vma->vm_flags |= VM_SOFTDIRTY;    return addr;}

这段代码和第二章中分析的mmap_region函数很类似,这里简单分析如下,get_unmapped_area用来检查需要分配的虚拟内存地址是否已经被使用,find_vma_links用来查找需要插入的虚拟内存在红黑树的位置,may_expand_vm用来检查虚拟内存是否会超过系统的限制,vma_merge用来合并虚拟内存,如果不能合并,就通过slab分配一个vma,进行相应的设置,并通过vma_link插入到进程的红黑树中。

从linux的代码中回来,继续看sysmalloc,假设分配成功,会查找是否有__after_morecore_hook函数并执行,这里假设该函数指针为null。
假设分配失败,则进入else部分,首先对需要分配的大小按地址对齐,并且设置分配size的最小值为MMAP_AS_MORECORE_SIZE(1MB),然后通过MMAP宏分配内存,该函数已经在《malloc源码分析—2》分析过了。这里注意,如果是通过mmap分配的内存,则设置分配区为不连续标志位。

第三部分

继续往下看sysmalloc,

static void * sysmalloc(INTERNAL_SIZE_T nb, mstate av) {    ...    if (av != &main_arena) {        ...    }    else{        ...        if (brk != (char *) (MORECORE_FAILURE)) {            if (mp_.sbrk_base == 0)                mp_.sbrk_base = brk;            av->system_mem += size;            if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))                set_head(old_top, (size + old_size) | PREV_INUSE);            else if (contiguous (av) && old_size && brk < old_end) {                malloc_printerr(3, "break adjusted to free malloc space", brk, av);            }            else {                front_misalign = 0;                end_misalign = 0;                correction = 0;                aligned_brk = brk;                if (contiguous(av)) {                    if (old_size)                        av->system_mem += brk - old_end;                    front_misalign = (INTERNAL_SIZE_T) chunk2mem(                            brk) & MALLOC_ALIGN_MASK;                    if (front_misalign > 0) {                        correction = MALLOC_ALIGNMENT - front_misalign;                        aligned_brk += correction;                    }                    correction += old_size;                    end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);                    correction += (ALIGN_UP(end_misalign, pagesize)) - end_misalign;                    assert(correction >= 0);                    snd_brk = (char *) (MORECORE(correction));                    if (snd_brk == (char *) (MORECORE_FAILURE)) {                        correction = 0;                        snd_brk = (char *) (MORECORE(0));                    } else {                        void (*hook)(                        void) = atomic_forced_read (__after_morecore_hook);                        if (__builtin_expect (hook != NULL, 0))                        (*hook)();                    }                }                ...            }        }    }    ...}

假设增加了主分配区的top chunk成功,则更新sbrk_base和分配区已分配的内存大小。
然后,第一个判断表示,新分配的内存地址和原来的top chunk连续,并且不是通过MMAP分配的,这时只需要更新原来top chunk的大小size
第二个判断表示如果分配区的连续标志位置位,top chunk的大小大于0,但是分配的brk小于原来的top chunk结束地址,这里就判定出错了。
进入第三个判断表示新分配的内存地址大于原来的top chunk的结束地址,但是不连续。这种情况下,如果分配区的连续标志位置位,则表示不是通过MMAP分配的,肯定有其他线程调用了brk在堆上分配了内存,av->system_mem += brk - old_end表示将其他线程分配的内存一并计入到该分配区分配的内存大小。然后将刚刚分配的地址brkMALLOC_ALIGNMENT对齐。
再往下就要处理地址不连续的问题了,因为地址不连续,就要放弃原来top chunk后面一部分的内存大小,并且将这一部分内存大小“补上”到刚刚分配的新内存后面。首先计算堆上补上内存后的结束地址并保存在correction中,然后调用MORECORE继续分配一次,将新分配内存的开始地址保存在snd_brk中。如果分配失败,则将correction设为0,并将snd_brk重置为原来分配的内存的结束地址,表示放弃该次补偿操作;如果分配成功,就调用__after_morecore_hook函数,这里假设该函数指针为null

第四部分

继续往下看sysmalloc,

static void * sysmalloc(INTERNAL_SIZE_T nb, mstate av) {    ...    if (av != &main_arena) {        ...    }    else{        ...        if (brk != (char *) (MORECORE_FAILURE)) {            ...            if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))                ...            else if (contiguous (av) && old_size && brk < old_end) {                ...            }            else {                ...                if (contiguous(av)) {                    ...                }                else{                    if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)                    assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);                    else{                        front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;                        if (front_misalign > 0){                            aligned_brk += MALLOC_ALIGNMENT - front_misalign;                        }                    }                    if (snd_brk == (char *) (MORECORE_FAILURE)){                        snd_brk = (char *) (MORECORE (0));                    }                }                if (snd_brk != (char *) (MORECORE_FAILURE)) {                    av->top = (mchunkptr) aligned_brk;                    set_head(av->top,                            (snd_brk - aligned_brk + correction) | PREV_INUSE);                    av->system_mem += correction;                    if (old_size != 0) {                        old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK;                        set_head(old_top, old_size | PREV_INUSE);                        chunk_at_offset (old_top, old_size)->size = (2 * SIZE_SZ)                                | PREV_INUSE;                        chunk_at_offset (old_top, old_size + 2 * SIZE_SZ)->size = (2                                * SIZE_SZ) | PREV_INUSE;                        if (old_size >= MINSIZE) {                            _int_free(av, old_top, 1);                        }                    }                }            }        }    }    ...}

开头的else表示分配区的连续标志没有置位,这时只要按照MALLOC_ALIGNMENT做简单的对齐就行了,如果是通过brk分配的内存,则通过MORECORE (0)得到新分配的内存的结束地址并保存在snd_brk中。
再往下进入if,设置分配区的top指针为经过对齐之后的起始地址aligned_brk,设置top chunk的大小sizealigned_brk表示对齐造成的误差,correction是因为要补偿原来top chunk剩余内存造成的误差,然后设置分配区已分配的内存大小。
因为不连续,最后if内是设置原top chunk的fencepost,将原来top chunk的剩余空间拆成两个SIZE_SZ*2大小的chunk,如果剩下的大小大于可分配的chunk的最小值MINSIZE,就通过_int_free释放掉整个剩余内存。

第五部分

继续往下看sysmalloc最后一部分,

static void * sysmalloc(INTERNAL_SIZE_T nb, mstate av) {    ...    if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))        av->max_system_mem = av->system_mem;    check_malloc_state (av);    p = av->top;    size = chunksize(p);    if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE )) {        remainder_size = size - nb;        remainder = chunk_at_offset(p, nb);        av->top = remainder;        set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));        set_head(remainder, remainder_size | PREV_INUSE);        check_malloced_chunk (av, p, nb);        return chunk2mem(p);    }    __set_errno(ENOMEM);    return 0;}

这里就是获得前面所有代码更新后的top chunk,然后从该top chunk中分配用户需要的大小chunk并返回,如果失败则返回0。

总结

简单总结一下sysmalloc函数,这里不包含《malloc源码分析—2》中的代码,该代码用于初始化。首先进入sysmalloc函数就表示top chunk的空间不够了。
假设当前分配区不是主分配区,就通过grow_heap增加top chunk的空间,如果失败就通过new_heap重新分配一个heap,并将该分配区的top chunk指针指向新分配的heap的空闲内存。
如果当前分配区是主分配区,首先会通过brk在堆上分配内存以增加top chunk的空间,如果失败再通过MMAP分配。假设新分配内存的地址不连续,而分配区的连续标志位置位,就会继续分配内存以补偿。
最后,只要分配成功,就可以从被更新的top chunk分配所需的内存。

0 0
原创粉丝点击