卡特兰数的应用 Catalan number

来源:互联网 发布:js number() 编辑:程序博客网 时间:2024/06/11 19:43

可以分析,当n=1时,只有1个根节点,则只能组成1种形态的二叉树,令n个节点可组成的二叉树数量表示为h(n),则h(1)=1; h(0)=0;

 

       当n=2时,1个根节点固定,还有2-1个节点。这一个节点可以分成(1,0),(0,1)两组。即左边放1个,右边放0个;或者左边放0个,右边放1个。即:h(2)=h(0)*h(1)+h(1)*h(0)=2,则能组成2种形态的二叉树。

 

      当n=3时,1个根节点固定,还有2个节点。这2个节点可以分成(2,0),(1,1),(0,2)3组。即h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=5,则能组成5种形态的二叉树。

 

以此类推,当n>=2时,可组成的二叉树数量为h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)*h(0)种,即符合Catalan数的定义,可直接利用通项公式得出结果。

 

令h(1)=1,h(0)=1,catalan数(卡特兰数)满足递归式:

  h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2)

  另类递归式:

  h(n)=((4*n-2)/(n+1))*h(n-1);

  该递推关系的解为:

  h(n)=C(2n,n)/(n+1) (n=1,2,3,...)C_n = \frac{1}{n+1}{2n \choose n} = \frac{(2n)!}{(n+1)!n!}

扩展:

卡特兰数的应用  (实质上都是递归等式的应用)

 1、括号化问题  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)

2、出栈次序问题  一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

  分析

  对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。

  在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。

  不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。

  反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。

  因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。

  显然,不符合要求的方案数为c(2n,n+1)。由此得出 输出序列的总数目=c(2n,n)-c(2n,n+1)=1/(n+1)*c(2n,n)。

  (这个公式的下标是从h(0)=1开始的)

  类似问题

  有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

3、凸多边形的三角剖分问题  求将一个凸多边形区域分成三角形区域的方法数。

  类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?

  类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

4、 用给定节点组成二叉树的问题  给定N个节点,能构成多少种不同的二叉树

  (能构成h(N)个)



  • Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的前缀字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:
XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY
  • 将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:
((())) ()(()) ()()() (())() (()())
  • Cn表示有n个节点组成不同构二叉树的方案数。下图中,n等于3,圆形表示节点,月牙形表示什么都没有。
  • Cn表示有2n+1个节点组成不同构满二叉树(full binary tree)的方案数。下图中,n等于3,圆形表示内部节点,月牙形表示外部节点。本质同上。
Catalan number binary tree example.png

证明:

令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数。显然含n个1、n个0的2n位二进制数共有{2n \choose n}个,下面考虑不满足要求的数目。

考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),则后面的0-1排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。

从而C_n = {2n \choose n} - {2n \choose n + 1} = \frac{1}{n+1}{2n \choose n}。证毕。

  • Cn表示所有在n × n格点中不越过对角线的单调路径的个数。一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。计算这种路径的个数等价于计算Dyck word的个数:X代表“向右”,Y代表“向上”。下图为n = 4的情况:
Catalan number 4x4 grid example.svg
  • Cn表示通过连结顶点而将n + 2边的凸多边形分成三角形的方法个数。下图中为n = 4的情况:
Catalan-Hexagons-example.svg
  • Cn表示对{1, ..., n}依序进出栈的置换个数。一个置换w是依序进出栈的当S(w) = (1, ..., n),其中Sw)递归定义如下:令w = unv,其中nw的最大元素,uv为更短的数列;再令S(w) = S(u)S(v)n,其中S为所有含一个元素的数列的单位元。
  • Cn表示集合{1, ..., n}的不交叉划分的个数.那么, Cn永远不大于第n项贝尔数. Cn也表示集合{1, ..., 2n}的不交叉划分的个数,其中每个段落的长度为2。综合这两个结论,可以用数学归纳法证明:在 魏格纳半圆分布定律 中度数大于2的情形下,所有 自由的 累积量s 为零。 该定律在 自由概率论 和 随机矩阵 理论中非常重要。
  • Cn表示用n个长方形填充一个高度为n的阶梯状图形的方法个数。下图为n = 4的情况:
Catalan stairsteps 4.svg
  • Cn表示表为2×n的矩阵的标准杨氏矩阵的数量。 也就是说,它是数字 1, 2, ..., 2n 被放置在一个2×n的矩形中并保证每行每列的数字升序排列的方案数。同样的,该式可由勾长公式的一个特殊情形推导得出。
  • Cn表示n个无标号物品的半序的个数。

0 0
原创粉丝点击