Linux内核中platform驱动模型架构与dm9000网卡驱动移植

来源:互联网 发布:photoviva类似的软件 编辑:程序博客网 时间:2024/06/09 13:39

 转自http://blog.csdn.net/yinwei520/article/details/6262931

 

一、硬件链接情况

    DM9000在电路板上的连接中与编程相关的如下:
1)EECS拉高:16bit模式;
2)INT连接到2440 EINT18:INT脚为低时为有效中断信号,中断线为EINT18
3)cs连接到2440的nGCS4,CMD连接2440地址总线ADDR[2]:知道上面这些信息已经足够移植驱动了。

二、platform驱动模型

      从Linux 2.6起引入了一套新的驱动管理和注册机制:Platform_device和Platform_driver。Linux中大部分的设备驱动,都可以使用这套机制, 设备用Platform_device表示,驱动用Platform_driver进行注册。

    Linux platform driver机制和传统的device driver 机制(通过driver_register函数进行注册)相比,一个十分明显的优势在于platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,并且拥有较好的可移植性和安全性(这些标准接口是安全的)。

    Platform机制的本身使用并不复杂,由两部分组成:platform_device和platfrom_driver。通过Platform机制开发发底层驱动的大致流程为:  定义 platform_device à 注册 platform_device à 定义 platform_driver à注册 platform_driver。

    首先要确认的就是设备的资源信息,例如设备的地址,中断号等。

在2.6内核中platform设备用结构体platform_device来描述,该结构体定义在kernel/include/linux/platform_device.h中,

struct platform_device {

 const char * name;

 u32  id;

 struct device dev;

 u32  num_resources;

 struct resource * resource;

};

 

该结构一个重要的元素是resource,该元素存入了最为重要的设备资源信息,定义在kernel/include/linux/ioport.h中,

struct resource {

 const char *name;

 unsigned long start, end;

 unsigned long flags;

 struct resource *parent, *sibling, *child;

};

 

一个独立的挂接在cpu总线上的设备单元,一般都需要一段线性的地址空间来描述设备自身,linux是怎么管理所有的这些外部"物理地址范围段",进而给用户和linux自身一个比较好的观察4G总线上挂接的一个个设备实体的简洁、统一级联视图的呢?
    linux采用struct resource结构体来描述一个挂接在cpu总线上的设备实体(32位cpu的总线地址范围是0~4G):
resource->start描述设备实体在cpu总线上的线性起始物理地址;
resource->end -描述设备实体在cpu总线上的线性结尾物理地址;
resource->name 描述这个设备实体的名称,这个名字开发人员可以随意起,但最好贴切;
resource->flag 描述这个设备实体的一些共性和特性的标志位;

问题:我怎样知道设备实体在cpu总线上的线性起始物理地址跟线性结尾物理地址?

通过查看原理图吗??如果是,那具体应该怎样分析呢?

三、现在分析dm9000在Linux内核中的结构。

    static struct platform_device与static struct platform_resources结构体在arch/arm/plat-s3c24xx/devs.c中定义,在arch/arm/plat-s3c/include/plat/devs.h中声明,在arch/arm/mach-s3c2440/mach-smdk2440.c中使用(通过函数:platform_add_devices()注册进内核)。

至于platform_driver的实现就是在dm900.c中实现了。

四、移植

 

从上图可以看出

a. dm9000的访问地址为BANK4的基址(也许是通过上面的nGCS4看出来的)。(这个我是不明白的)
b. 只有一根地址线ADDR2。
c. 总线位宽为16位,有nWAIT信号。
d. 使用中断引脚为EINT18(使用LAN_INT实现的)。

一 增加DM9000平台设备
增加平台设备前首先要先定义该平台设备,这主要修改arch/arm/plat-s3c24xx/devs.c文件。
1.添加头文件 ,在devs.c文件的头文件引入处添加如下代码:

#include <linux/dm9000.h>

2.定义dm9000平台资源 ,在devs.c文件的合适处添加如下代码(其实看一下源文件就知道合适的意思):

1. /* DM9000 */      2. static struct resource s3c_dm9k_resource[] = {      3.     [0] = {      4.         .start = S3C2410_CS4,      5.         .end   = S3C2410_CS4 + 3,      6.         .flags = IORESOURCE_MEM,      7.     },      8.     [1] = {      9.         .start = S3C2410_CS4 + 4,     10.         .end   = S3C2410_CS4 + 4 + 3,     11.         .flags = IORESOURCE_MEM,     12.     },     13.     [2] = {     14.         .start = IRQ_EINT7,     15.         .end   = IRQ_EINT7,     16.         .flags = IORESOURCE_IRQ | IRQF_TRIGGER_RISING,     17.     }     18.      19. };     20.      21. /* for the moment we limit ourselves to 16bit IO until some   22.  * better IO routines can be written and tested   23. */     24.      25. static struct dm9000_plat_data s3c_dm9k_platdata = {     26.     .flags      = DM9000_PLATF_16BITONLY,     27. };     28.      29. struct platform_device s3c_device_dm9k = {     30.     .name       = "dm9000",     31.     .id     = 0,     32.     .num_resources  = ARRAY_SIZE(s3c_dm9k_resource),     33.     .resource   = s3c_dm9k_resource,     34.     .dev        = {     35.         .platform_data = &s3c_dm9k_platdata,     36.     }     37. };     38.      39. EXPORT_SYMBOL(s3c_device_dm9k);    

NOTE:
a.s3c_dm9k_resource数组定义了3个资源:两个内存空间和一个中断号。数组项0、1定义了访问dm9000时使用的地址。在dm9000的芯片手册上有如下的介绍:

    CMD Command Type
         When high, the access of this command cycle is DATA port
         When low, the access of this command cycle is ADDRESS port

所以数组项0、1的.start域就容易理解了,S3C2410_CS4中addr2为0,表示传输地址;S3C2410_CS4 + 4中addr2为1,表示传输数据。数组项[2]定义的中断号就较容易理解。
b.结构s3c_dm9k_platdata中指定了数据总线宽度为16。
c.结构s3c_device_dm9k就是dm9000的平台设备,其中.resource和.dev项分别指向前面定义的s3c_dm9k_resource和s3c_dm9k_platdata。

3.把定义的平台设备加入到内核设备列表中 ,在common-smdk.c文件的smdk_devs数组中添加一下代码:(我的为mach-mini2440.c文件mini2440_devices数组)

&s3c_device_dm9k,

这样,系统启动时就会把这个数组中的设备注册到内核中。

二 修改dm9000.c文件
对dm9000的枚举最终由dm9000_probe函数来实现。
1.添加头文件 ,在dm9000.c的头文件引入处增加以下代码,定义了一些寄存器的宏定义:

view plain copy to clipboard print ?
#if defined(CONFIG_ARCH_S3C2410)   
#include <mach/regs-mem.h>   
#endif   

view plaincopy to clipboardprint?
#if defined(CONFIG_ARCH_S3C2410)  
#include <mach/regs-mem.h>  
#endif 
#if defined(CONFIG_ARCH_S3C2410)
#include <mach/regs-mem.h>
#endif
 

2.修改probe函数 ,通过设置存储控制器使BANK4可用,修改后的dm9000_probe函数如下,其中修改的地方都由CONFIG_ARCH_S3C2410包括:

view plaincopy to clipboardprint?# *    #  * Search DM9000 board, allocate space and register it    #  */     # static int __devinit     # dm9000_probe(struct platform_device *pdev)     # {     #     struct dm9000_plat_data *pdata = pdev->dev.platform_data;     #     struct board_info *db;  /* Point a board information structure */     #     struct net_device *ndev;     #     const unsigned char *mac_src;     #     int ret = 0;     #     int iosize;     #     int i;     #     u32 id_val;     #      # #   if defined(CONFIG_ARCH_S3C2410)     #     unsigned int oldval_bwscon = *(volatile unsigned int *)S3C2410_BWSCON;     #     unsigned int oldval_bankcon4 = *(volatile unsigned int *)S3C2410_BANKCON4;     # #   endif     #      #     /* Init network device */     #     ndev = alloc_etherdev(sizeof(struct board_info));     #     if (!ndev) {     #         dev_err(&pdev->dev, "could not allocate device./n");     #         return -ENOMEM;     #     }     #      #     SET_NETDEV_DEV(ndev, &pdev->dev);     #      #     dev_dbg(&pdev->dev, "dm9000_probe()/n");     #      # #if defined(CONFIG_ARCH_S3C2410)     #     *((volatile unsigned int *)S3C2410_BWSCON) =     #             (oldval_bwscon & ~(3<<16)) | S3C2410_BWSCON_DW4_16 | S3C2410_BWSCON_WS4 | S3C2410_BWSCON_ST4;     #     *((volatile unsigned int *)S3C2410_BANKCON4) = 0x1f7c;     # #endif     #      #     /* setup board info structure */     #     db = netdev_priv(ndev);     #     memset(db, 0, sizeof(*db));     #      #     db->dev = &pdev->dev;     #     db->ndev = ndev;     #      #     spin_lock_init(&db->lock);     #     mutex_init(&db->addr_lock);     #      #     INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);     #      #     db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);     #     db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);     #     db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);     #      #     if (db->addr_res == NULL || db->data_res == NULL ||     #         db->irq_res == NULL) {     #         dev_err(db->dev, "insufficient resources/n");     #         ret = -ENOENT;     #         goto out;     #     }     #      #     iosize = res_size(db->addr_res);     #     db->addr_req = request_mem_region(db->addr_res->start, iosize,     #                       pdev->name);     #      #     if (db->addr_req == NULL) {     #         dev_err(db->dev, "cannot claim address reg area/n");     #         ret = -EIO;     #         goto out;     #     }     #      #     db->io_addr = ioremap(db->addr_res->start, iosize);     #      #     if (db->io_addr == NULL) {     #         dev_err(db->dev, "failed to ioremap address reg/n");     #         ret = -EINVAL;     #         goto out;     #     }     #      #     iosize = res_size(db->data_res);     #     db->data_req = request_mem_region(db->data_res->start, iosize,     #                       pdev->name);     #      #     if (db->data_req == NULL) {     #         dev_err(db->dev, "cannot claim data reg area/n");     #         ret = -EIO;     #         goto out;     #     }     #      #     db->io_data = ioremap(db->data_res->start, iosize);     #      #     if (db->io_data == NULL) {     #         dev_err(db->dev, "failed to ioremap data reg/n");     #         ret = -EINVAL;     #         goto out;     #     }     #      #     /* fill in parameters for net-dev structure */     #     ndev->base_addr = (unsigned long)db->io_addr;     #     ndev->irq    = db->irq_res->start;     #      #     /* ensure at least we have a default set of IO routines */     #     dm9000_set_io(db, iosize);     #      #     /* check to see if anything is being over-ridden */     #     if (pdata != NULL) {     #         /* check to see if the driver wants to over-ride the    #          * default IO width */     #      #         if (pdata->flags & DM9000_PLATF_8BITONLY)     #             dm9000_set_io(db, 1);     #      #         if (pdata->flags & DM9000_PLATF_16BITONLY)     #             dm9000_set_io(db, 2);     #      #         if (pdata->flags & DM9000_PLATF_32BITONLY)     #             dm9000_set_io(db, 4);     #      #         /* check to see if there are any IO routine    #          * over-rides */     #      #         if (pdata->inblk != NULL)     #             db->inblk = pdata->inblk;     #      #         if (pdata->outblk != NULL)     #             db->outblk = pdata->outblk;     #      #         if (pdata->dumpblk != NULL)     #             db->dumpblk = pdata->dumpblk;     #      #         db->flags = pdata->flags;     #     }     #      # #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL     #     db->flags |= DM9000_PLATF_SIMPLE_PHY;     # #endif     #      #     dm9000_reset(db);     #      #     /* try multiple times, DM9000 sometimes gets the read wrong */     #     for (i = 0; i < 8; i++) {     #         id_val  = ior(db, DM9000_VIDL);     #         id_val |= (u32)ior(db, DM9000_VIDH) << 8;     #         id_val |= (u32)ior(db, DM9000_PIDL) << 16;     #         id_val |= (u32)ior(db, DM9000_PIDH) << 24;     #      #         if (id_val == DM9000_ID)     #             break;     #         dev_err(db->dev, "read wrong id 0x%08x/n", id_val);     #     }     #      #     if (id_val != DM9000_ID) {     #         dev_err(db->dev, "wrong id: 0x%08x/n", id_val);     #         ret = -ENODEV;     #         goto out;     #     }     #      #     /* Identify what type of DM9000 we are working on */     #      #     id_val = ior(db, DM9000_CHIPR);     #     dev_dbg(db->dev, "dm9000 revision 0x%02x/n", id_val);     #      #     switch (id_val) {     #     case CHIPR_DM9000A:     #         db->type = TYPE_DM9000A;     #         break;     #     case CHIPR_DM9000B:     #         db->type = TYPE_DM9000B;     #         break;     #     default:     #         dev_dbg(db->dev, "ID %02x => defaulting to DM9000E/n", id_val);     #         db->type = TYPE_DM9000E;     #     }     #      #     /* from this point we assume that we have found a DM9000 */     #      #     /* driver system function */     #     ether_setup(ndev);     #      #     ndev->open        = &dm9000_open;     #     ndev->hard_start_xmit    = &dm9000_start_xmit;     #     ndev->tx_timeout         = &dm9000_timeout;     #     ndev->watchdog_timeo = msecs_to_jiffies(watchdog);     #     ndev->stop        = &dm9000_stop;     #     ndev->set_multicast_list = &dm9000_hash_table;     #     ndev->ethtool_ops     = &dm9000_ethtool_ops;     #     ndev->do_ioctl        = &dm9000_ioctl;     #      # #ifdef CONFIG_NET_POLL_CONTROLLER     #     ndev->poll_controller     = &dm9000_poll_controller;     # #endif     #      #     db->msg_enable       = NETIF_MSG_LINK;     #     db->mii.phy_id_mask  = 0x1f;     #     db->mii.reg_num_mask = 0x1f;     #     db->mii.force_media  = 0;     #     db->mii.full_duplex  = 0;     #     db->mii.dev       = ndev;     #     db->mii.mdio_read    = dm9000_phy_read;     #     db->mii.mdio_write   = dm9000_phy_write;     #      # #if defined(CONFIG_ARCH_S3C2410)     #     printk("Now use the default MAC address: 08:90:90:90:90:90/n");     #     mac_src = "friendly-arm";     #     ndev->dev_addr[0] = 0x08;     #     ndev->dev_addr[1] = 0x90;     #     ndev->dev_addr[2] = 0x90;     #     ndev->dev_addr[3] = 0x90;     #     ndev->dev_addr[4] = 0x90;     #     ndev->dev_addr[5] = 0x90;     # #else     #     mac_src = "eeprom";     #      #     /* try reading the node address from the attached EEPROM */     #     for (i = 0; i < 6; i += 2)     #         dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);     #      #     if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {     #         mac_src = "platform data";     #         memcpy(ndev->dev_addr, pdata->dev_addr, 6);     #     }     #      #     if (!is_valid_ether_addr(ndev->dev_addr)) {     #         /* try reading from mac */     #              #         mac_src = "chip";     #         for (i = 0; i < 6; i++)     #             ndev->dev_addr[i] = ior(db, i+DM9000_PAR);     #     }     #      #     if (!is_valid_ether_addr(ndev->dev_addr))     #         dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "     #              "set using ifconfig/n", ndev->name);     # #endif     #      #     platform_set_drvdata(pdev, ndev);     #     ret = register_netdev(ndev);     #      #     if (ret == 0)     #         printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)/n",     #                ndev->name, dm9000_type_to_char(db->type),     #                db->io_addr, db->io_data, ndev->irq,     #                ndev->dev_addr, mac_src);     #     return 0;     #      # out:     # #if defined(CONFIG_ARCH_S3C2410)     #     *(volatile unsigned int *)S3C2410_BWSCON   = oldval_bwscon;     #     *(volatile unsigned int *)S3C2410_BANKCON4 = oldval_bankcon4;     # #endif     #     dev_err(db->dev, "not found (%d)./n", ret);     #      #     dm9000_release_board(pdev, db);     #     free_netdev(ndev);     #      #     return ret;     # }    # * #  * Search DM9000 board, allocate space and register it #  */  # static int __devinit  # dm9000_probe(struct platform_device *pdev)  # {  #     struct dm9000_plat_data *pdata = pdev->dev.platform_data;  #     struct board_info *db;  /* Point a board information structure */  #     struct net_device *ndev;  #     const unsigned char *mac_src;  #     int ret = 0;  #     int iosize;  #     int i;  #     u32 id_val;  #   # #   if defined(CONFIG_ARCH_S3C2410)  #     unsigned int oldval_bwscon = *(volatile unsigned int *)S3C2410_BWSCON;  #     unsigned int oldval_bankcon4 = *(volatile unsigned int *)S3C2410_BANKCON4;  # #   endif  #   #     /* Init network device */  #     ndev = alloc_etherdev(sizeof(struct board_info));  #     if (!ndev) {  #         dev_err(&pdev->dev, "could not allocate device./n");  #         return -ENOMEM;  #     }  #   #     SET_NETDEV_DEV(ndev, &pdev->dev);  #   #     dev_dbg(&pdev->dev, "dm9000_probe()/n");  #   # #if defined(CONFIG_ARCH_S3C2410)  #     *((volatile unsigned int *)S3C2410_BWSCON) =  #             (oldval_bwscon & ~(3<<16)) | S3C2410_BWSCON_DW4_16 | S3C2410_BWSCON_WS4 | S3C2410_BWSCON_ST4;  #     *((volatile unsigned int *)S3C2410_BANKCON4) = 0x1f7c;  # #endif  #   #     /* setup board info structure */  #     db = netdev_priv(ndev);  #     memset(db, 0, sizeof(*db));  #   #     db->dev = &pdev->dev;  #     db->ndev = ndev;  #   #     spin_lock_init(&db->lock);  #     mutex_init(&db->addr_lock);  #   #     INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);  #   #     db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);  #     db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);  #     db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);  #   #     if (db->addr_res == NULL || db->data_res == NULL ||  #         db->irq_res == NULL) {  #         dev_err(db->dev, "insufficient resources/n");  #         ret = -ENOENT;  #         goto out;  #     }  #   #     iosize = res_size(db->addr_res);  #     db->addr_req = request_mem_region(db->addr_res->start, iosize,  #                       pdev->name);  #   #     if (db->addr_req == NULL) {  #         dev_err(db->dev, "cannot claim address reg area/n");  #         ret = -EIO;  #         goto out;  #     }  #   #     db->io_addr = ioremap(db->addr_res->start, iosize);  #   #     if (db->io_addr == NULL) {  #         dev_err(db->dev, "failed to ioremap address reg/n");  #         ret = -EINVAL;  #         goto out;  #     }  #   #     iosize = res_size(db->data_res);  #     db->data_req = request_mem_region(db->data_res->start, iosize,  #                       pdev->name);  #   #     if (db->data_req == NULL) {  #         dev_err(db->dev, "cannot claim data reg area/n");  #         ret = -EIO;  #         goto out;  #     }  #   #     db->io_data = ioremap(db->data_res->start, iosize);  #   #     if (db->io_data == NULL) {  #         dev_err(db->dev, "failed to ioremap data reg/n");  #         ret = -EINVAL;  #         goto out;  #     }  #   #     /* fill in parameters for net-dev structure */  #     ndev->base_addr = (unsigned long)db->io_addr;  #     ndev->irq    = db->irq_res->start;  #   #     /* ensure at least we have a default set of IO routines */  #     dm9000_set_io(db, iosize);  #   #     /* check to see if anything is being over-ridden */  #     if (pdata != NULL) {  #         /* check to see if the driver wants to over-ride the #          * default IO width */  #   #         if (pdata->flags & DM9000_PLATF_8BITONLY)  #             dm9000_set_io(db, 1);  #   #         if (pdata->flags & DM9000_PLATF_16BITONLY)  #             dm9000_set_io(db, 2);  #   #         if (pdata->flags & DM9000_PLATF_32BITONLY)  #             dm9000_set_io(db, 4);  #   #         /* check to see if there are any IO routine #          * over-rides */  #   #         if (pdata->inblk != NULL)  #             db->inblk = pdata->inblk;  #   #         if (pdata->outblk != NULL)  #             db->outblk = pdata->outblk;  #   #         if (pdata->dumpblk != NULL)  #             db->dumpblk = pdata->dumpblk;  #   #         db->flags = pdata->flags;  #     }  #   # #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL  #     db->flags |= DM9000_PLATF_SIMPLE_PHY;  # #endif  #   #     dm9000_reset(db);  #   #     /* try multiple times, DM9000 sometimes gets the read wrong */  #     for (i = 0; i < 8; i++) {  #         id_val  = ior(db, DM9000_VIDL);  #         id_val |= (u32)ior(db, DM9000_VIDH) << 8;  #         id_val |= (u32)ior(db, DM9000_PIDL) << 16;  #         id_val |= (u32)ior(db, DM9000_PIDH) << 24;  #   #         if (id_val == DM9000_ID)  #             break;  #         dev_err(db->dev, "read wrong id 0x%08x/n", id_val);  #     }  #   #     if (id_val != DM9000_ID) {  #         dev_err(db->dev, "wrong id: 0x%08x/n", id_val);  #         ret = -ENODEV;  #         goto out;  #     }  #   #     /* Identify what type of DM9000 we are working on */  #   #     id_val = ior(db, DM9000_CHIPR);  #     dev_dbg(db->dev, "dm9000 revision 0x%02x/n", id_val);  #   #     switch (id_val) {  #     case CHIPR_DM9000A:  #         db->type = TYPE_DM9000A;  #         break;  #     case CHIPR_DM9000B:  #         db->type = TYPE_DM9000B;  #         break;  #     default:  #         dev_dbg(db->dev, "ID %02x => defaulting to DM9000E/n", id_val);  #         db->type = TYPE_DM9000E;  #     }  #   #     /* from this point we assume that we have found a DM9000 */  #   #     /* driver system function */  #     ether_setup(ndev);  #   #     ndev->open        = &dm9000_open;  #     ndev->hard_start_xmit    = &dm9000_start_xmit;  #     ndev->tx_timeout         = &dm9000_timeout;  #     ndev->watchdog_timeo = msecs_to_jiffies(watchdog);  #     ndev->stop        = &dm9000_stop;  #     ndev->set_multicast_list = &dm9000_hash_table;  #     ndev->ethtool_ops     = &dm9000_ethtool_ops;  #     ndev->do_ioctl        = &dm9000_ioctl;  #   # #ifdef CONFIG_NET_POLL_CONTROLLER  #     ndev->poll_controller     = &dm9000_poll_controller;  # #endif  #   #     db->msg_enable       = NETIF_MSG_LINK;  #     db->mii.phy_id_mask  = 0x1f;  #     db->mii.reg_num_mask = 0x1f;  #     db->mii.force_media  = 0;  #     db->mii.full_duplex  = 0;  #     db->mii.dev       = ndev;  #     db->mii.mdio_read    = dm9000_phy_read;  #     db->mii.mdio_write   = dm9000_phy_write;  #   # #if defined(CONFIG_ARCH_S3C2410)  #     printk("Now use the default MAC address: 08:90:90:90:90:90/n");  #     mac_src = "friendly-arm";  #     ndev->dev_addr[0] = 0x08;  #     ndev->dev_addr[1] = 0x90;  #     ndev->dev_addr[2] = 0x90;  #     ndev->dev_addr[3] = 0x90;  #     ndev->dev_addr[4] = 0x90;  #     ndev->dev_addr[5] = 0x90;  # #else  #     mac_src = "eeprom";  #   #     /* try reading the node address from the attached EEPROM */  #     for (i = 0; i < 6; i += 2)  #         dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);  #   #     if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {  #         mac_src = "platform data";  #         memcpy(ndev->dev_addr, pdata->dev_addr, 6);  #     }  #   #     if (!is_valid_ether_addr(ndev->dev_addr)) {  #         /* try reading from mac */  #           #         mac_src = "chip";  #         for (i = 0; i < 6; i++)  #             ndev->dev_addr[i] = ior(db, i+DM9000_PAR);  #     }  #   #     if (!is_valid_ether_addr(ndev->dev_addr))  #         dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "  #              "set using ifconfig/n", ndev->name);  # #endif  #   #     platform_set_drvdata(pdev, ndev);  #     ret = register_netdev(ndev);  #   #     if (ret == 0)  #         printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)/n",  #                ndev->name, dm9000_type_to_char(db->type),  #                db->io_addr, db->io_data, ndev->irq,  #                ndev->dev_addr, mac_src);  #     return 0;  #   # out:  # #if defined(CONFIG_ARCH_S3C2410)  #     *(volatile unsigned int *)S3C2410_BWSCON   = oldval_bwscon;  #     *(volatile unsigned int *)S3C2410_BANKCON4 = oldval_bankcon4;  # #endif  #     dev_err(db->dev, "not found (%d)./n", ret);  #   #     dm9000_release_board(pdev, db);  #     free_netdev(ndev);  #   #     return ret;  # }   

a.第24-27行定义了两个变量,用来保存BWSCON和BANKCON4的值,下面将会用到。

b.第32-39对BANK4进行了设置。首先设置BWSCON,

9对BANK4进行了设置。首先设置BWSCON,

#if defined(CONFIG_ARCH_S3C2410)        *((volatile  unsigned  int  *)S3C2410_BWSCON) =               (oldval_bwscon & ~(3<<16)) | S3C2410_BWSCON_DW4_16 | S3C2410_BWSCON_WS4 | S3C2410_BWSCON_ST4;       *((volatile  unsigned  int  *)S3C2410_BANKCON4) = 0x1f7c;   #endif    view plaincopy to clipboardprint?#if defined(CONFIG_ARCH_S3C2410)       *((volatile unsigned int *)S3C2410_BWSCON) =               (oldval_bwscon & ~(3<<16)) | S3C2410_BWSCON_DW4_16 | S3C2410_BWSCON_WS4 | S3C2410_BWSCON_ST4;       *((volatile unsigned int *)S3C2410_BANKCON4) = 0x1f7c;   #endif  #if defined(CONFIG_ARCH_S3C2410) *((volatile unsigned int *)S3C2410_BWSCON) =   (oldval_bwscon & ~(3<<16)) | S3C2410_BWSCON_DW4_16 | S3C2410_BWSCON_WS4 | S3C2410_BWSCON_ST4; *((volatile unsigned int *)S3C2410_BANKCON4) = 0x1f7c;#endif    

主要是设置了总线宽度16,nWAIT,ST。(具体的可以参考s3c2440数据手册的BUS WIDTH & WAIT CONTROL REGISTER (BWSCON))。然后设置BANKCON4的时间参数,值为0×1f7c(pmc:normal Tacp:6clk Tcah:4clk Tcoh:1clk Tacc:14clk Tcos:4clk 具体可以参考s3c2440数据手册的BANK CONTROL REGISTER)

c.第209-216的代码是我自己给注释的,据其意思,上面首先给MAC赋值,然后检测合法性,但经实践,判断语句总成立,所以在linux启动注册dm9000时总输出Invalid ethernet MAC address.反正后面也会再次给MAC地址赋值,所以干脆把这几行代码注释掉。

d.第218-227行就是给MAC地址赋值的,听说赋什么值都可以,有这么神奇吗?

e.第266-269行恢复寄存器原来的值。

f.以上的步骤和代码都是参考书上的,但可惜的是,按照上面步骤去修改,系统能成功加载dm9000驱动,但无法ping通,这个事确实让我很苦恼,上网找了很多资料,最后发现大多数都需要调用writel来设置BWSCON、GPFCON和中断等。所以无计之下参考了mini2440中的一段代码,出自附送光盘的无操作系统代码测试的dm9000部分。

到此 ,代码的移植到此为止,然后是配置内核,以使用dm9000。在

-> Device Drivers                                                   
        --> Network device support                                       
           --> Network device support (NETDEVICES [=y])                      
             --> Ethernet (10 or 100Mbit) 处将DM9000网卡选为编译进内核。
然后在/etc/init.d/rcS文件的开始处加入

ifconfig
 eth0 192.168.1.22<
pre>
当然,ip地址是因人而定的,尽量设为和PC在同一个网段。重新将内核下载到开发板后启动




 

原创粉丝点击