linux内核数据结构之kfifo

来源:互联网 发布:五知四会四个能力 编辑:程序博客网 时间:2024/06/02 23:54

1、前言

  最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:

  环形缓冲区的详细介绍及实现方法可以参考http://en.wikipedia.org/wiki/Circular_buffer,介绍的非常详细,列举了实现环形队列的几种方法。环形队列的不便之处在于如何判断队列是空还是满。维基百科上给三种实现方法。

2、linux 内核kfifo

  kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:

复制代码
struct kfifo {    unsigned char *buffer;     /* the buffer holding the data */    unsigned int size;         /* the size of the allocated buffer */    unsigned int in;           /* data is added at offset (in % size) */    unsigned int out;          /* data is extracted from off. (out % size) */    spinlock_t *lock;          /* protects concurrent modifications */};
复制代码

kfifo提供的方法有:

复制代码
 1 //根据给定buffer创建一个kfifo 2 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size, 3                 gfp_t gfp_mask, spinlock_t *lock); 4 //给定size分配buffer和kfifo 5 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, 6                  spinlock_t *lock); 7 //释放kfifo空间 8 void kfifo_free(struct kfifo *fifo) 9 //向kfifo中添加数据10 unsigned int kfifo_put(struct kfifo *fifo,11                 const unsigned char *buffer, unsigned int len)12 //从kfifo中取数据13 unsigned int kfifo_put(struct kfifo *fifo,14                 const unsigned char *buffer, unsigned int len)15 //获取kfifo中有数据的buffer大小16 unsigned int kfifo_len(struct kfifo *fifo)
复制代码

       定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下:

复制代码
 1 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size, 2              gfp_t gfp_mask, spinlock_t *lock) 3 { 4     struct kfifo *fifo; 6     /* size must be a power of 2 */ 7     BUG_ON(!is_power_of_2(size)); 9     fifo = kmalloc(sizeof(struct kfifo), gfp_mask);10     if (!fifo)11         return ERR_PTR(-ENOMEM);13     fifo->buffer = buffer;14     fifo->size = size;15     fifo->in = fifo->out = 0;16     fifo->lock = lock;17 18     return fifo;19 }20 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)21 {22     unsigned char *buffer;23     struct kfifo *ret;29     if (!is_power_of_2(size)) {30         BUG_ON(size > 0x80000000);31         size = roundup_pow_of_two(size);32     }34     buffer = kmalloc(size, gfp_mask);35     if (!buffer)36         return ERR_PTR(-ENOMEM);38     ret = kfifo_init(buffer, size, gfp_mask, lock);39 40     if (IS_ERR(ret))41         kfree(buffer);43     return ret;44 }
复制代码

  在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

      kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:

复制代码
 1 static inline unsigned int kfifo_put(struct kfifo *fifo, 2                 const unsigned char *buffer, unsigned int len) 3 { 4     unsigned long flags; 5     unsigned int ret; 6     spin_lock_irqsave(fifo->lock, flags); 7     ret = __kfifo_put(fifo, buffer, len); 8     spin_unlock_irqrestore(fifo->lock, flags); 9     return ret;10 }11 12 static inline unsigned int kfifo_get(struct kfifo *fifo,13                      unsigned char *buffer, unsigned int len)14 {15     unsigned long flags;16     unsigned int ret;17     spin_lock_irqsave(fifo->lock, flags);18     ret = __kfifo_get(fifo, buffer, len);19         //当fifo->in == fifo->out时,buufer为空20     if (fifo->in == fifo->out)21         fifo->in = fifo->out = 0;22     spin_unlock_irqrestore(fifo->lock, flags);23     return ret;24 }25 26 27 unsigned int __kfifo_put(struct kfifo *fifo,28             const unsigned char *buffer, unsigned int len)29 {30     unsigned int l;31        //buffer中空的长度32     len = min(len, fifo->size - fifo->in + fifo->out);34     /*35      * Ensure that we sample the fifo->out index -before- we36      * start putting bytes into the kfifo.37      */39     smp_mb();41     /* first put the data starting from fifo->in to buffer end */42     l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));43     memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);45     /* then put the rest (if any) at the beginning of the buffer */46     memcpy(fifo->buffer, buffer + l, len - l);47 48     /*49      * Ensure that we add the bytes to the kfifo -before-50      * we update the fifo->in index.51      */53     smp_wmb();55     fifo->in += len;  //每次累加,到达最大值后溢出,自动转为057     return len;58 }59 60 unsigned int __kfifo_get(struct kfifo *fifo,61              unsigned char *buffer, unsigned int len)62 {63     unsigned int l;64         //有数据的缓冲区的长度65     len = min(len, fifo->in - fifo->out);67     /*68      * Ensure that we sample the fifo->in index -before- we69      * start removing bytes from the kfifo.70      */72     smp_rmb();74     /* first get the data from fifo->out until the end of the buffer */75     l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));76     memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);78     /* then get the rest (if any) from the beginning of the buffer */79     memcpy(buffer + l, fifo->buffer, len - l);81     /*82      * Ensure that we remove the bytes from the kfifo -before-83      * we update the fifo->out index.84      */86     smp_mb();88     fifo->out += len; //每次累加,到达最大值后溢出,自动转为090     return len;91 }
复制代码

  put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。

(1)空的kfifo,

(2)put一个buffer后

(3)get一个buffer后

(4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去

3、测试程序

 仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:

复制代码
  1 /**@brief 仿照linux kfifo写的ring buffer  2  *@atuher Anker  date:2013-12-18  3 * ring_buffer.h  4  * */  5   6 #ifndef KFIFO_HEADER_H   7 #define KFIFO_HEADER_H  8   9 #include <inttypes.h> 10 #include <string.h> 11 #include <stdlib.h> 12 #include <stdio.h> 13 #include <errno.h> 14 #include <assert.h> 15  16 //判断x是否是2的次方 17 #define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0)) 18 //取a和b中最小值 19 #define min(a, b) (((a) < (b)) ? (a) : (b)) 20  21 struct ring_buffer 22 { 23     void         *buffer;     //缓冲区 24     uint32_t     size;       //大小 25     uint32_t     in;         //入口位置 26     uint32_t       out;        //出口位置 27     pthread_mutex_t *f_lock;    //互斥锁 28 }; 29 //初始化缓冲区 30 struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock) 31 { 32     assert(buffer); 33     struct ring_buffer *ring_buf = NULL; 34     if (!is_power_of_2(size)) 35     { 36     fprintf(stderr,"size must be power of 2.\n"); 37         return ring_buf; 38     } 39     ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer)); 40     if (!ring_buf) 41     { 42         fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s", 43             errno, strerror(errno)); 44         return ring_buf; 45     } 46     memset(ring_buf, 0, sizeof(struct ring_buffer)); 47     ring_buf->buffer = buffer; 48     ring_buf->size = size; 49     ring_buf->in = 0; 50     ring_buf->out = 0; 51         ring_buf->f_lock = f_lock; 52     return ring_buf; 53 } 54 //释放缓冲区 55 void ring_buffer_free(struct ring_buffer *ring_buf) 56 { 57     if (ring_buf) 58     { 59     if (ring_buf->buffer) 60     { 61         free(ring_buf->buffer); 62         ring_buf->buffer = NULL; 63     } 64     free(ring_buf); 65     ring_buf = NULL; 66     } 67 } 68  69 //缓冲区的长度 70 uint32_t __ring_buffer_len(const struct ring_buffer *ring_buf) 71 { 72     return (ring_buf->in - ring_buf->out); 73 } 74  75 //从缓冲区中取数据 76 uint32_t __ring_buffer_get(struct ring_buffer *ring_buf, void * buffer, uint32_t size) 77 { 78     assert(ring_buf || buffer); 79     uint32_t len = 0; 80     size  = min(size, ring_buf->in - ring_buf->out);         81     /* first get the data from fifo->out until the end of the buffer */ 82     len = min(size, ring_buf->size - (ring_buf->out & (ring_buf->size - 1))); 83     memcpy(buffer, ring_buf->buffer + (ring_buf->out & (ring_buf->size - 1)), len); 84     /* then get the rest (if any) from the beginning of the buffer */ 85     memcpy(buffer + len, ring_buf->buffer, size - len); 86     ring_buf->out += size; 87     return size; 88 } 89 //向缓冲区中存放数据 90 uint32_t __ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size) 91 { 92     assert(ring_buf || buffer); 93     uint32_t len = 0; 94     size = min(size, ring_buf->size - ring_buf->in + ring_buf->out); 95     /* first put the data starting from fifo->in to buffer end */ 96     len  = min(size, ring_buf->size - (ring_buf->in & (ring_buf->size - 1))); 97     memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf->size - 1)), buffer, len); 98     /* then put the rest (if any) at the beginning of the buffer */ 99     memcpy(ring_buf->buffer, buffer + len, size - len);100     ring_buf->in += size;101     return size;102 }103 104 uint32_t ring_buffer_len(const struct ring_buffer *ring_buf)105 {106     uint32_t len = 0;107     pthread_mutex_lock(ring_buf->f_lock);108     len = __ring_buffer_len(ring_buf);109     pthread_mutex_unlock(ring_buf->f_lock);110     return len;111 }112 113 uint32_t ring_buffer_get(struct ring_buffer *ring_buf, void *buffer, uint32_t size)114 {115     uint32_t ret;116     pthread_mutex_lock(ring_buf->f_lock);117     ret = __ring_buffer_get(ring_buf, buffer, size);118     //buffer中没有数据119     if (ring_buf->in == ring_buf->out)120     ring_buf->in = ring_buf->out = 0;121     pthread_mutex_unlock(ring_buf->f_lock);122     return ret;123 }124 125 uint32_t ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)126 {127     uint32_t ret;128     pthread_mutex_lock(ring_buf->f_lock);129     ret = __ring_buffer_put(ring_buf, buffer, size);130     pthread_mutex_unlock(ring_buf->f_lock);131     return ret;132 }133 #endif
复制代码

采用多线程模拟生产者和消费者编写测试程序,如下所示:

复制代码
  1 /**@brief ring buffer测试程序,创建两个线程,一个生产者,一个消费者。  2  * 生产者每隔1秒向buffer中投入数据,消费者每隔2秒去取数据。  3  *@atuher Anker  date:2013-12-18  4  * */  5 #include "ring_buffer.h"  6 #include <pthread.h>  7 #include <time.h>  8   9 #define BUFFER_SIZE  1024 * 1024 10  11 typedef struct student_info 12 { 13     uint64_t stu_id; 14     uint32_t age; 15     uint32_t score; 16 }student_info; 17  18  19 void print_student_info(const student_info *stu_info) 20 { 21     assert(stu_info); 22     printf("id:%lu\t",stu_info->stu_id); 23     printf("age:%u\t",stu_info->age); 24     printf("score:%u\n",stu_info->score); 25 } 26  27 student_info * get_student_info(time_t timer) 28 { 29     student_info *stu_info = (student_info *)malloc(sizeof(student_info)); 30     if (!stu_info) 31     { 32     fprintf(stderr, "Failed to malloc memory.\n"); 33     return NULL; 34     } 35     srand(timer); 36     stu_info->stu_id = 10000 + rand() % 9999; 37     stu_info->age = rand() % 30; 38     stu_info->score = rand() % 101; 39     print_student_info(stu_info); 40     return stu_info; 41 } 42  43 void * consumer_proc(void *arg) 44 { 45     struct ring_buffer *ring_buf = (struct ring_buffer *)arg; 46     student_info stu_info;  47     while(1) 48     { 49     sleep(2); 50     printf("------------------------------------------\n"); 51     printf("get a student info from ring buffer.\n"); 52     ring_buffer_get(ring_buf, (void *)&stu_info, sizeof(student_info)); 53     printf("ring buffer length: %u\n", ring_buffer_len(ring_buf)); 54     print_student_info(&stu_info); 55     printf("------------------------------------------\n"); 56     } 57     return (void *)ring_buf; 58 } 59  60 void * producer_proc(void *arg) 61 { 62     time_t cur_time; 63     struct ring_buffer *ring_buf = (struct ring_buffer *)arg; 64     while(1) 65     { 66     time(&cur_time); 67     srand(cur_time); 68     int seed = rand() % 11111; 69     printf("******************************************\n"); 70     student_info *stu_info = get_student_info(cur_time + seed); 71     printf("put a student info to ring buffer.\n"); 72     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info)); 73     printf("ring buffer length: %u\n", ring_buffer_len(ring_buf)); 74     printf("******************************************\n"); 75     sleep(1); 76     } 77     return (void *)ring_buf; 78 } 79  80 int consumer_thread(void *arg) 81 { 82     int err; 83     pthread_t tid; 84     err = pthread_create(&tid, NULL, consumer_proc, arg); 85     if (err != 0) 86     { 87     fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n", 88         errno, strerror(errno)); 89     return -1; 90     } 91     return tid; 92 } 93 int producer_thread(void *arg) 94 { 95     int err; 96     pthread_t tid; 97     err = pthread_create(&tid, NULL, producer_proc, arg); 98     if (err != 0) 99     {100     fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n",101         errno, strerror(errno));102     return -1;103     }104     return tid;105 }106 107 108 int main()109 {110     void * buffer = NULL;111     uint32_t size = 0;112     struct ring_buffer *ring_buf = NULL;113     pthread_t consume_pid, produce_pid;114 115     pthread_mutex_t *f_lock = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));116     if (pthread_mutex_init(f_lock, NULL) != 0)117     {118     fprintf(stderr, "Failed init mutex,errno:%u,reason:%s\n",119         errno, strerror(errno));120     return -1;121     }122     buffer = (void *)malloc(BUFFER_SIZE);123     if (!buffer)124     {125     fprintf(stderr, "Failed to malloc memory.\n");126     return -1;127     }128     size = BUFFER_SIZE;129     ring_buf = ring_buffer_init(buffer, size, f_lock);130     if (!ring_buf)131     {132     fprintf(stderr, "Failed to init ring buffer.\n");133     return -1;134     }135 #if 0136     student_info *stu_info = get_student_info(638946124);137     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));138     stu_info = get_student_info(976686464);139     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));140     ring_buffer_get(ring_buf, (void *)stu_info, sizeof(student_info));141     print_student_info(stu_info);142 #endif143     printf("multi thread test.......\n");144     produce_pid  = producer_thread((void*)ring_buf);145     consume_pid  = consumer_thread((void*)ring_buf);146     pthread_join(produce_pid, NULL);147     pthread_join(consume_pid, NULL);148     ring_buffer_free(ring_buf);149     free(f_lock);150     return 0;151 }
复制代码

测试结果如下所示:

4、参考资料

http://blog.csdn.net/linyt/article/details/5764312

http://en.wikipedia.org/wiki/Circular_buffer

http://yiphon.diandian.com/post/2011-09-10/4918347

http://blog.chinaunix.net/uid-16759545-id-4892021.html

转载自:http://www.cnblogs.com/Anker/p/3481373.html

原创粉丝点击